
give in format ion  on the dis t r ibut ion of p r e s s u r e  and s h e a r  s t r e s s  on the su r face  of the body. However ,  it i s  
be t te r  to have a phys ica l ly  re l iab le  value of the d rag  coeff icient  of the body and to not know the p r e s s u r e  d i s -  
t r ibut ion on it  than to have the p r e s s u r e  dis t r ibut ion but to know that  i t  is conditional in c h a r a c t e r .  

L I T E R A T U R E  C I T E D  

1. G . I .  Taganov,  "Second d iss ipa t ive  l aye r  and wake in v iscous  flow about a body," Uch. Zap. TsAGI, 1, 
No. 6 (1970). 

2. G . I .  Taganov,  "Model of c i rcu la t ion  nea r  a wing of infinite span  with one t ra i l ing  edge at high Reynolds 
numbers , "  P r ep r i n t / D i v i s i on  of Mechanics  of Inhomogeneous Media, Academy of Sciences  of the USSR, 
No. 5, Moscow (1980). 

3. G . I .  Taganov,  "Substantiat ion of the re la t ion  Il . . . .  2 ~* �9 used in a model of c i rcu la t ion  n e a r  a wing of ~VoO u 2o0 

infinite s p a n  with a sha rp  t ra i l ing  edge," Uch. Zap. TsAGI, 17, No. 5 (1986). 
4. C . J .  Apelt  and C. S. West ,  "The  ef fec ts  of wake sp l i t t e r  p la tes  on bluff-body flow in the range  104 < R < 

5 �9 104. Pt.  2," J .  Fluid Mech.,  71, Pt .  1 (1975). 
5. M . I .  Gurevich,  Theory  of J e t s  of an Ideal Fluid [in Russian] ,  Nauka, Moscow (1979). 
6. V . S .  Sadovskii ,  " T w o - p a r a m e t e r  fami ly  of fluid flows about a plate in the p r e s e n c e  of r e v e r s e  je t s , "  Zh. 

P r iM.  Mekh, Tekh. Fiz . ,  No. 3 (1987). 

R E Y N O L D S  S T R E S S  D I S T R I B U T I O N  D U R I N G  

F L O W  A R O U N D  A D I H E D R A L  A N G L E  

K.  G r e i c h e n  a n d  V .  I .  K o r n i l o v  

L O N G I T U D I N A L  

UDC 532.526.4 

Study of the s t ruc tu re  of so -ca l l ed  complex turbulent  flows that  cannot be computed suff icient ly accura te ly  
by methods of the c l a s s i ca l  t heo ry  of a thin shea r  l aye r  cont inues  to evoke g r e a t  i n t e r e s t  in h y d r o - a e r o m e c h a n -  
ics .  A typica l  example  of shear  flows of this kind is the t h r ee -d imens iona l  flow along a l ine of in te r sec t ion  of 
two s u r f a c e s  fo rming  a dihedral  angle. It  is  known that  s i m i l a r  flows a re  encountered in d i f ferent  engineer ing 
appl icat ions,  for  ins tance ,  in the a r e a  of wing juncture  with the fuse lage  or o ther  flying vehicle e lements ,  in 
tu rb ines ,  and also in p r i s m a t i c  channels .  

A whole s e r i e s  of t heo re t i ca l  and expe r imen ta l  r e s e a r c h e s  is  devoted to the s tudy of the s t r u c t u r e  of t u r -  
bulent  f lows in angular  configurat ions,  in pa r t i cu l a r ,  f e a tu re s  of the development  and in te rac t ion  of boundary 
l a y e r s  [1, 2], the extent  of the spat ia l  domain in the t r a n s v e r s e  d i rec t ion  [2, 3], the secondary  flow s t ruc tu re  [4], 
and the influence of di f ferent  f ac to r s  on the nature  of these  complex flows [3, 5]. However ,  comple te  i n fo rma-  
tion on not only the role  of the ave rage  veloci t ies  but also on the d is t r ibut ion of all the Reynolds s t r e s s  t en so r  
components  is  n e c e s s a r y  for  a c o r r e c t  desc r ip t ion  of the fundamental  physica l  phenomena in such  flows. S im-  
i l a r  in format ion  is also n e c e s s a r y  for  fu r the r  pe r fec t ion  and development  of the computat ion methods ,  and in 
pa r t i cu l a r ,  for  the deve lopment  of a model of  turbulence .  

A wide va r i e ty  of techniques ex i s t s  for  m e a s u r i n g  the Reynolds s t r e s s  component  by the hot wire  s en so r  
of a t h e r m o a n e m o m e t e r  [6]. Analys is  of these  methods in appl icat ion to the flow in a dihedral  angle shows that  
the m e a s u r e m e n t  method by a t h e r m o a n e m o m e t e r  s e n s o r  with a s ingle oblique f i l ament  ro ta t ing  around the 
housing axis [7] has  a num ber  of i r r e fu t ab l e  advantages .  In pa r t i cu l a r ,  it does not r equ i re  the introduction of 
any assumpt ions  about the effect ive veloci ty  in the modified King law, nor also p r e l i m i n a r y  informat ion  about 
the d i rec t ion  of the s t r e a m  veloci ty  vec tor  and is r e l ea sed  f r o m  the necess i ty  to use  mult ichannel  appara tus .  

E a r l i e r  the authors  found approval  for  the ment ioned method for  the case  when the axis  of s e n s o r  rotat ion 
made a r ight  angle with the f r ee  s t r e a m  veloci ty  vector .  The max ima l  e r r o r  of the Reynolds s t r e s s  he re  is 
on the o r d e r  of 25-30% of the upper  m e a s u r e d  value of the appropr i a t e  component.  It turns  out that the funda- 
menta l  sou rce  of e r r o r s  is due to conditions of ae rodynamic  s enso r  in terac t ion  with the s t r e a m .  

Ber l in .  Novos ib i rsk .  T rans la t ed  f r o m  Zhurnal  Pr ik ladnoi  Mekhaniki i Tekhnicheskoi  Fiziki ,  No. 3, pp. 
58-62, May-June ,  1987. Original  a r t i c l e  submit ted  March  24, 1986. 
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The purpose of the p resen t  paper  is to obtain refined data about the Reynolds s t r e s s  distribution in a 
th ree-d imens iona l  incompress ib le  turbulent flow in a dihedral angle on the basis  of a perfected experiment 
methodology. 

The tes t s  were  conducted in the low-turbulence ITPM wind tunnel of the Siberian Branch of the USSR 
Academy of Sciences [8] at a 30 m / s e c  unperturbed s t r eam velocity which cor responds  to a Reynolds number 
of Rex = 1.8 �9 106 (x = 910 mm) in the t r ansve r se  section. A sketch of the dihedral angle model is represented  
in Fig. 1. The model of the angle consis ts  of two plane ground faces mounted at a 90 ~ angle. The nose and tail 
par ts  of the plate were fabricated in the shape of a semiel l ipse  with a semi -ax i s  ratio of b:a = 1:12 (b = 8 ram). 
Here,  with the exception of the domain in the d i rec t  neighborhood of the leading edge, a gradient - f ree  nature of 
the flow is real ized on the model surface.  A group of p r e s s u r e  detectors  of 0.5 mm diameter  was on each face 
of the angle. A completely  developed turbulent boundary layer  was achieved by using an art if icial  turbulizer ,  
which was a s t r ip  of 0.8 mm thick e m e r y  paper glued along the span of the dihedral  angle at a 10 mm distance 
f rom the leading edge. 

A set of the rmoanemomet r i c  apparatus 551~ of the f i rm DISA was used to measure  the boundary layer  
p a r a m e t e r s  and turbulence charac te r i s t i c s .  A s ingle-wire  miniature the rmoanemomete r  sensor  with a Wolla- 
ston oblique wire [9] with 3 #m and 0.6 mm working sect ion and length, respect ively ,  was used as p r i m a r y  t r ans -  
ducer.  The angle 7 between the fi lament and axis of the sensor  here  varied f rom 45 ~ to 70 ~ A number  of ex- 
per iments  was executed by a boundary layer  type sensor  with a normal ly  arranged fi lament (Fig. 1). 

The n e c e s s a r y  initial information to determine the mean velocity vector  and Reynolds s t r e s s  components 
is obtained by rotat ing the the rmoanemomete r  sensor  with the single oblique wire around the housing axis in the 
s t r e a m  point under investigation. Special attention is paid to the fact  that the middle of the wire remained 
superposed with the center  of rotat ion during rotat ion of the sensor .  During the experiment  the sensor  housing 
could be oriented at an a rb i t r a ry  angle to the s t r eam velocity vector,  which would permi t  determination of the 
rational sensor  position in the s t r e a m  to assure  a reduced level of art if icial  per turbat ions  during its s t r e a m -  
lining. Depending on the d i scre te  angle of s enso r  rotation a m  at the desired point in space at the end of the 

measur ing  procedure ,  dependences E(~m) and |/~(a~) are  obtained, where E and | / ~  are  the mean and 
r m s  voltage at the anemomete r  output. In the presence  of appropriate  data on the calibrat ions of the sensor s  
being utilized [10], which had been executed in a sufficiently broad range of variat ion of the flow conditions, in 
pr inciple  this information is sufficient for  determinat ion of the mean s t r eam velocity and Reynolds s t ress .  

F igure  2 shows dimensionless  prof i les  of the normal  and tangential s t r e s s e s  (normalized relat ive to the 
velocity u e on the outer  boundary layer  boundary) measured  at the distance z ~ 1062 f rom the angular line 
where the nature  of the flow is analogous to the fiat plate case.  The points 1-6 correspond to the Reynolds 

stress componen  ~---~1,~, Presented  for comparison is also the 
fluctuation profi le  (the darkened circles)  which can be considered tes ts  in a definite sense since it  is measured  
by the sensor  whose housing and cur ren t  leads were oriented a lmost  paral le l  to the s t ream,  while the Wollaston 
wire was located along the normal  to the velocity vector .  Resul ts  of measurements  executed by monotypical 
s ensor s  in o rde r  to confi rm reproducibi l i ty  of the resu l t s  are  shown by points while the lines are  averaged 
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Klebanoff data [11] for  a fully developed boundary layer  on a flat plate for  Re x ~ 4.1 �9 10 s. The good quantitative 
and qualitative agreement  between the normal  s t r e s s  prof i les  being compared can be seen. 

The maximal deviation of the measured  values of the longitudinal velocity fluctuation component W~/ue, 
due to the random spread of the experimental  values V~'r~---/ue, f rom the resul ts  obtained by a sensor  with a n o r m a l  

fi lament as welt as f rom data in  [11] does notexceed 6%, and the components y~/ue and V-~/u~ have the 
maximal  deviation 12.5 and 4%, respect ively .  Attention is turned to the reduced level of the component u ' v ' / u  2 
in the near -wal l  par t  of the boundary layer  in considerat ion of the tangential s t r e s se s .  The deviation of the ex- 
per imental  values of U'v' /u~ reaches  16.5%. Moreover ,  it is  well known that the components u ~ / U 2 e  and 
v ' w ' / u  2 should be identically ze ro  in the two-dimensional  flow case.  It is impossible  to a s se r t  that they are  
exactly ze ro  in this case but they are  at least  close to zero .  

Therefore ,  judging by the resu l t  of measuremen t s  in the flow domain with well-studied proper t ies ,  ut i l iza-  
tion of a perfected experimental  p rocedure  pe rmi t s  substantial  diminution of the e r r o r  in determining the m a -  
jor i ty  of Reynolds s t r e s s  components.  

Typical distributions of different Reynolds s t r e s s  components in the t r a n s v e r s e  section under invest iga-  
tion are  shown in Fig. 3 in the fo rm of equivalent l ines of these quantities, where a-e  cor respond to (~f~-~/u~). 

t0 ~ = coast, (V~/u~) ]t0 2 =-coast, (v -~- /ue ) .10  ~ = coast, (u-Z~/u~).t0 4 =c0nst ,  (u-~/u~):10 4 = coast, (v-7~/u~).lO~= 

coast .  The values of the constants  are  shown at the lines. The distr ibution of the line V ~/u~ = coast is ob- 
tained on the basis of measu remen t s  by a s enso r  with the normal ly  disposed Woltaston wire,  whose housing 
and cur ren t  leads were oriented paral le l  to the s t r e a m  while the distribution of the remaining  lines is f rom a 
sensor  with an oblique wire whose axis of rotation was at a 45 ~ angle to the s t r eam velocity vector .  

The resul ts  of the exper iments  pe rmi t  a number  of charac te r i s t i c  p roper t i es  and features  of the turbulent 
flow s t ruc ture  to be noted in the c ross  section under investigation: 

The contour  of all the l ines represented  is dis tor ted substantial ly by secondary  flows which, as is  known 
[1, 5], a re  developed in the form of vortex pai rs  in the three-dimensional  co rner  flow domain. In other  words,  
the turbulence field of such a flow is determined to a considerable  extent by the magnitude and direct ion of the 
secondary  flows being developed. However, the in ter re la t ion  between the Reynolds s t r e s s  and the secondary  
flows is probably more  complicated,  namely: the t r ansve r se  gradients  of these s t r e s s e s  induce secondary  
flows, and these la t ter ,  in turn, redis t r ibute  the Reynolds s t r e s s e s  in the t r ansve r se  sect ion of the corner ;  

a c lear ly  defined asymptotic  t ransi t ion of the turbulence charac te r i s t i c  in the spatial domain of the corner  
to cer ta in  values charac te r i s t i c  for two-dimensional  flow is observed analogously to the averaged flow p a r a m -  
e te rs  [3]. The extent of this t rans i t ion  domain in the z (or y) axis direct ion is a quantity on the o rde r  of 3-4 
th icknesses  of the two-dimensional  layer;  

the re  is nothing unusual in the fact that the distr ibution of the lines W~/ue = coast  and v-T~w'/u 2 = coast  
is symmet r i c  in nature re la t ive  to the bisectr ix  plane of the co rne r  while the distr ibution of the remaining lines 
is substantial ly nonsymmetr ic .  It is  c lea r  that the damping p roper t i e s  of the walls (the faces of the corner)  are  

identical to the left and right re la t ive to the component V~/ue, consequently, the distribution of this component 

is symmet r i c  in nature.  On the other  hand, it is also seen that the level of the component ] / f ~ ,  say, on the 

face z of the corner  is  noticeably higher than for  the component ~ f ~ ,  and its distr ibution on this face within 

the l imits  of experiment  e r r o r  is the same in nature  as the distr ibution of ] / z ~  on the face y of the corner .  
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An analogous feature  is also inherent to the s t r e s s e s  u 'v - -~  and u'w } with the sole difference that during passage 
f rom the face z to the face y and back a more  substantial  change in these components is observed up to a p rob-  
able change in sign in the near -wal l  flow domain. All this is explained by the different damping proper t ies  os 
the co rne r  faces  in the s t r e s s  components mentioned; 

it is c lear  f rom physical  considerat ions that individual Reynolds s t r e ss  components,  w - ~  and u'v---;, e.g., 
on the face z should equal the components v--T2-' and u'w ~ on the y face, respect ively ,  at s imi la r  points. The r e -  
sults obtained show that this requi rement  is actually conserved with an e r r o r  no worse  than 5-7%. Moreover ,  
f rom the s imple condition of s y m m e t r y  in the b issec t r ix  plane of the corner  the components v -F2 and w --~, as well 
as u 'v  ---T and u'--~ should be identical.  Such a requi rement  is also conserved with an e r r o r  no worse  than 10%. 
All this is additional proof  of the re l iabi l i ty  and equal likelihood of the resu l t s  obtained. 

The authors are  grateful to M. t toffmeis ter  and A. M. Kharitonov for  attention and support  to this r e sea rch  
and to V. S. Kosorygin for valuable ass is tance  during prepara t ion  for  the experiment.  
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EFFECTIVE DIFFUSION OF A DYNAMICALLY PASSIVE 

IMPURITY IN NARROW CHANNELS 

A.  I .  M o s h i n s k i i  UDC 532.542.2 

The diffusion equation is r a r e l y  solved success fu l ly  by analyt ical  means  when it  contains a convect ive 
t e r m  in which the veloci ty  components  a r e  complex functions of the space  coordinates .  In the case  of diffusion 
in channels ,  the author of [1] p roposed  a method of reduc ing  the basic  equation to a s imp le r  f o r m  containing an 
effect ive  diffusion (dispersion) coeff icient .  This  approach  was l a t e r  followed in tens ively  (see [2-4], for  ex-  
ample ,  where  other  approaches  to the p r o b l e m  were  also proposed) .  He re ,  we obtain a s i m i l a r  equation of e f -  
fect ive  diffusion in na r row channels under  the condition that the s t r e a m  function in the channel used to e x p r e s s  
the d i spe r s ion  fac tor  is known. Calculat ion 6f the s t r e a m  function is  an independent p rob l em.  We subsequent ly  
use  the re la t ions  obtained to solve the p r o b l e m  of ex t rac t ing  a subs tance  f r o m  nar row t r enches  (slits) when the 
channel has  a boundary through which exchange of the subs tance  with the ma in  flow is  poss ib le .  

As is  known, the flow scheme  of L a v r e n t ' e v  [5] ag r ee s  be t t e r  with exper imen ta l  r e su l t s  than does o ther  
models  for  the flow of a low-v i scos i ty  fluid in a t rench .  The flow model is based on the t h e o r e m  [6, 7] of con-  
s tancy of vor t ic i ty  in c losed regions .  However ,  vor t i c i ty  may  not be constant  when the v i scos i ty  coeff icient  p 
is va r iab le  [8]. Assuming  that  the vor t i c i ty  d is t r ibut ion  was known, we obtained a genera l  express ion  for  the 
s t r e a m  function in a na r row cavi ty bounded by the coordinate  l ines of an or thogonal  coordinate  s y s t e m .  As an 
example ,  we examined the case  of ex t rac t ion  of a subs tance  f r o m  a deep sl i t .  

We p ropose  an in tegra l  t r a n s f o r m a t i o n  which canbe  used to solve a c e r t a i n r a n g e  of p r o b l e m s  of the d i s -  
pe r s i on  of a subs tance  in channels .  

1. Der iva t ion  of Equation of Effect ive  Diffusion and Initial  Condition. We will a s sume  that  the length of 
the channel in the X 1 d i rec t ion  is  much g r e a t e r  than the length in the X 2 direct ion.  The boundar ies  of the chan-  
nel a r e  a s sumed  to coincide with the coordinate  l ines of the plane Xp X 2. We will l imi t  ou r se lves  to the two-  
d imens ional  p rob lem.  Let  the s t r e a m  function ~ in the channel be known, and le t  i ts  values  at the boundar ies  
of the channel be equal to zero .  Then the components  of the veloci ty  of the fluid in the channel a r e  de te rmined  
by the fo rmulas  

v 1 = H ~ I O T / O X 2 ,  v 2 = - -  H ' Z : O ~ / O X : , ~ .  (1.1) 

where  H1,2(X 1, X 2) a r e  the Lam~ constants .  The equation of diffusion of the impur i ty  in the channel has the f o r m  

e2H1H.~ ~ -t- ,W ( , ,  ~ ~//20z,] ~- \ t t l  0x:] '  (i.2) 

W(~,c)  o, 0c 0, 0c 
0x 2 0x l 0x 1 0x2 '~ 

while the d imens ion les s  p a r a m e t e r s  and coord ina tes  a re  connected to the d imensional  p a r a m e t e r s  and coo r -  
dinates by the re la t ions  

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Teldmicheskoi Fiziki, No. 3, pp. 62-71, 
May-June, 1987. Original article submitted March 24, 1986. 
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